Alloy Analyzer 4 Tutorial

Session 4: Dynamic Modeling

Greg Dennis and Rob Seater Software Design Group, MIT

model of an address book

```
abstract sig Target {}
sig Name extends Target {}
sig Addr extends Target {}
sig Book { addr: Name -> Target }
pred init [b: Book] { no b.addr }
pred inv [b: Book] {
  let addr = b.addr | all n: Name {
    n not in n.^addr
    some addr.n => some n.addr
fun lookup [b: Book, n: Name] : set Addr {
  n.^(b.addr) & Addr
assert namesResolve {
  all b: Book | inv[b] =>
    all n: Name | some b.addr[n] => some lookup[b, n]
check namesResolve for 4
```

what about operations?

- how is a name & address added to a book?
- no built-in model of execution
 - no notion of time or mutable state
- need to model time/state explicitly

can use a new "book" after each mutation:

```
pred add [b, b': Book, n: Name, t: Target] {
  b'.addr = b.addr + n->t
}
```

address book: operation simulation

- simulates an operation's executions
- download addressBook.als from the tutorial website
- execute run command to simulate the add operation
 - simulated execution can begin from invalid state!
- create and run the predicate showAdd
 - simulates the add method only from valid states

```
pred showAdd [b, b': Book, n: Name, t: Target] {
  inv[b]
  add[b, b', n, t]
}
```

modify showAdd to force interesting executions

address book: delete operation

- write a predicate for a *delete* operation
 - removes a name-target pair from a book
 - simulate interesting executions

- assert and check that delete is the undo of add
 - adding a name-target pair and then deleting that pair yields a book equivalent to original
 - why does this fail?
- modify the assertion so that it only checks the case when the added pair is not in the pre-state book, and check

pattern: abstract machine

treat actions as operations on global state

```
sig State {...}

pred init [s: State] {...}

pred inv [s: State] {...}

pred opl [s, s': State] {...}

...

pred opN [s, s': State] {...}
```

- in addressBook, State is Book
 - each *Book* represents a new system state

pattern: invariant preservation

check that an operation preserves an invariant

```
assert initEstablishes {
  all s: State | init[s] => inv[s]
}
check initEstablishes

// for each operation
assert opPreserves {
  all s, s': State |
   inv[s] && op[s, s'] => inv[s']
}
check opPreserves
```

- apply this pattern to the addressBook model
- do the add and delete ops preserve the invariant?

pattern: operation preconditions

- include precondition constraints in an operation
 - operations no longer total
- the *add* operation with a precondition:

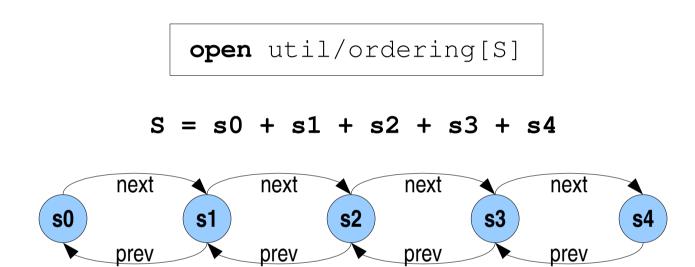
```
pred add[b, b': Book, n: Name, t: Target] {
    // precondition
    t in Name => (n !in t.*(b.addr) && some b.addr[t])
    // postcondition
    b'.addr = b.addr + n->t
}
```

- check that add now preserves the invariant
- add a sensible precondition to the delete operation
 - check that it now preserves the invariant

what about traces?

- we can check properties of individual transitions
- what about properties of sequences of transitions?
- entire system simulation
 - simulate the execution of a sequence of operations
- algorithm correctness
 - check that all traces end in a desired final state
- planning problems
 - find a trace that ends in a desired final state

pattern: traces


- model sequences of executions of abstract machine
- create linear (total) ordering over states
- connect successive states by operations
 - constrains all states to be reachable

```
open util/ordering[State] as ord
...
fact traces {
  init [ord/first]
  all s: State - ord/last |
   let s' = s.next |
     op1[s, s'] or ... or opN[s, s']
}
```

apply traces pattern to the address book model

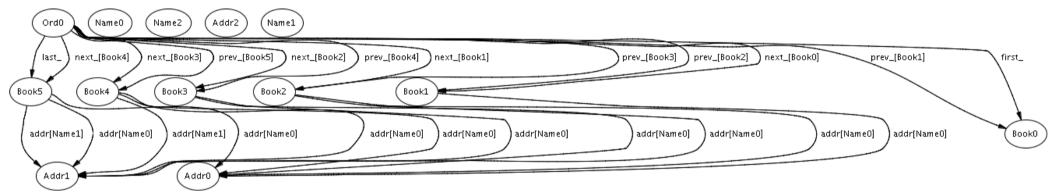
ordering module

establishes linear ordering over atoms of signature S

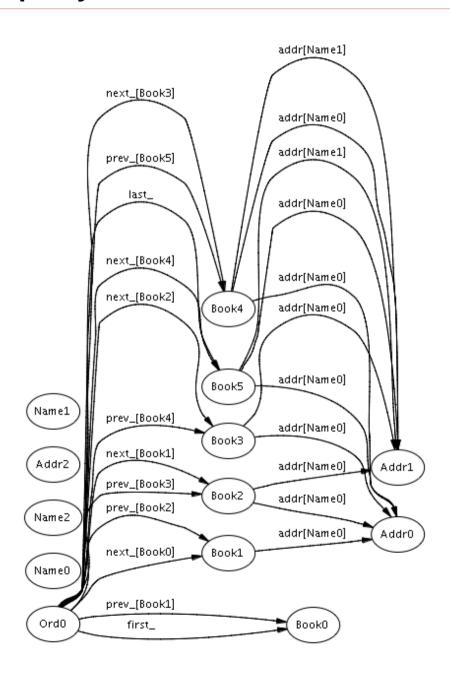

```
first = s0
last = s4
s2.next = s3
s2.prev = s1
s2.nexts = s3 + s4
s2.prevs = s0 + s1
```

```
lt[s1, s2] = true
lt[s1, s1] = false
gt[s1, s2] = false
lte[s0, s3] = true
lte[s0, s0] = true
gte[s2, s4] = false
```

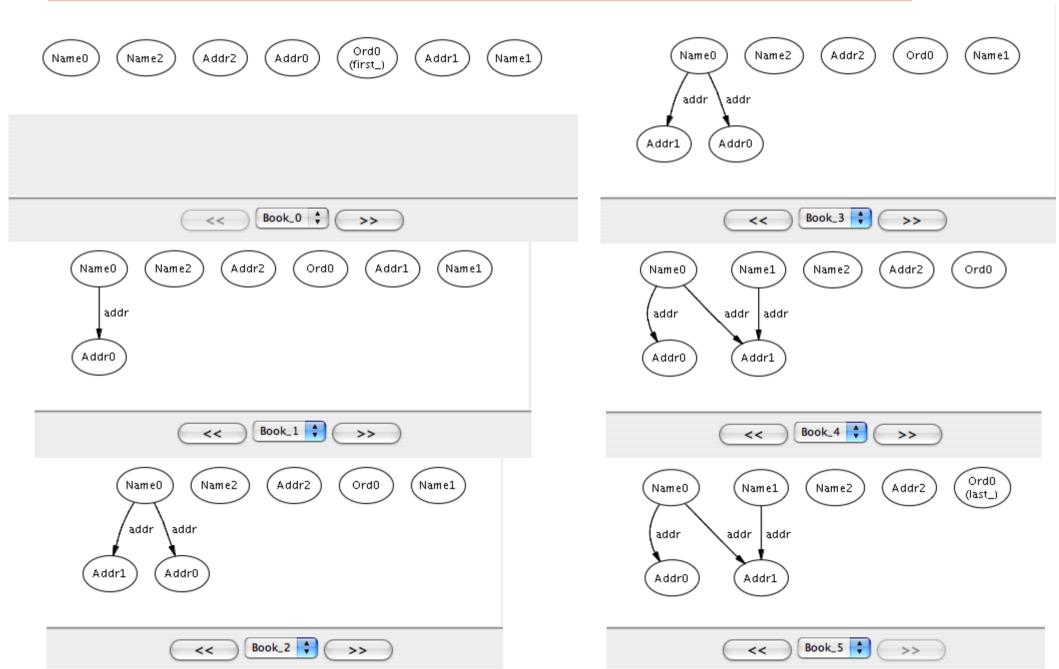
address book simulation

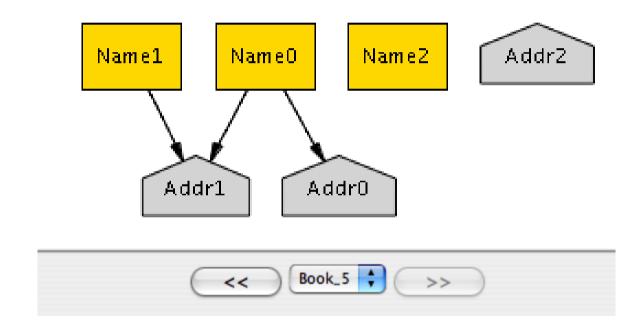

- simulate addressBook trace
 - write and run an empty predicate

- customize and cleanup visualization
 - remove all components of the Ord module


but visualization is still complicated

need to use projection . . .


without projection


still without projection

with projection

with projection and more

checking safety properties

- can check safety property with one assertion
 - because now all states are reachable

```
pred safe[s: State] {...}

assert allReachableSafe {
   all s: State | safe[s]
}
```

- check addressBook invariant with one assertion
 - what's the difference between this safety check and checking that each operation preserves the invariant?

non-modularity of abstract machine

static traffic light model

```
sig Color {}
sig Light {
   color: Color
}
```

- dynamic traffic light model with abstract machine
 - all dynamic components collected in one sig

```
sig Color {}
sig Light {}
sig State {
  color: Light -> one Color
}
```

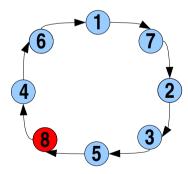
pattern: local state

- embed state in individual objects
 - variant of abstract machine
- move state/time signature out of first column
 - typically most convenient in last column

global state

```
sig Color {}

sig Light {}


sig State {
  color: Light -> one Color
}
```

local state

```
sig Time {}
sig Color {}
sig Light {
  color: Color one -> Time
}
```

example: leader election in a ring

- many distributed protocols require "leader" process
 - leader coordinates the other processes
 - leader "elected" by processes, not assigned in advance
- leader is the process with the largest identifier
 - each process has unique identifier
- leader election in a ring
 - processes pass identifiers around ring
 - if identifier less than own, drops it
 - if identifier greater, passes it on
 - if identifier equal, elects itself leader

leader election: topology

- beginning of model using local state abstract machine:
 - processes are ordered instead of given ids

```
open util/ordering[Time] as to
  open util/ordering[Process] as po

sig Time {}
  sig Process {
    succ: Process,
    toSend: Process -> Time,
    elected: set Time
}
```

- download ringElection.als from the tutorial website
- constrain the successor relation to form a ring

leader election: notes

- topology of the ring is static
 - succ field has no Time column
- no constraint that there be one elected process
 - that's a property we'd like to check
- set of elected processes is a definition
 - "elected" at one time instance then no longer

```
fact defineElected {
   no elected.(to/first)
   all t: Time - to/first |
      elected.t = {p:Process |
        p in (p.toSend.t - p.toSend.(t.prev))}
}
```

leader election: operations

- write initialization condition init[t: Time]
 - every process has exactly itself to send

- write no-op operation skip[t, t': Time, p: Process]
 - process p send no ids during that time step

- write send operation step[t, t': Time, p: Process]
 - process p sends one id to successor
 - successor keeps it or drops it

leader election: traces

use the following traces constraint

```
fact traces {
  init[to/first]
  all t: Time - to/last | let t' = t.next |
    all p: Process | step[t, t', p] ||
      step[t, t', succ.p] || skip[t, t', p]
}
```

- why does traces fact need step(t, t', succ.p)?
- what's the disadvantage to writing this instead?

```
some p: Process | step[t, t', p] &&
all p': Process - (p + p.succ) | skip[t, t', p]
```

leader election: analysis

- simulate interesting leader elections
- create intuitive visualization with projection
- check that at most one process is ever elected
 - no more than one process is deemed elected
 - no process is deemed elected more than once
- check that at least one process is elected
 - check for 3 processes and 7 time instances
 - write additional constraint to make this succeed

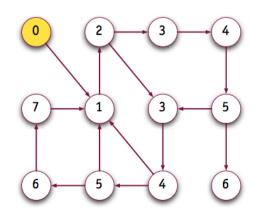
ordering module and exact scopes

```
open util/ordering[Time] as to
open util/ordering[Process] as po
```

ordering module forces signature scopes to be exact

```
3 Process, 7 Time = exactly 3 Process, exactly 7 Time
```

to analyze rings up to k processes in size:


```
sig Process {}
sig RingProcess extends Process {
   succ: RingProcess,
   toSend: RingProcess -> Time,
   elected: set Time
}
fact {all p: RingProcess | RingProcess in p.^succ }
```

machine diameter

- what trace length is long enough to catch all bugs?
 - does "at most one elected" fail in a longer trace?
- *machine diameter* = max steps from initial state
 - longest loopless path is an upper bound
- run this predicate for longer traces until no solution

```
pred looplessPath {
   no disj t, t': Time | toSend.t = toSend.t'
}
run looplessPath for 3 Process, ? Time
```

for three processes, what trace length is sufficient to explore all possible states?

thank you!

- website
 - http://alloy.mit.edu/
- provides . . .
 - online tutorial
 - reference manual
 - research papers
 - academic courses
 - sample case studies
 - alloy-discuss yahoo group

