Alloy Analyzer 4 Tutorial

Session 4: Dynamic Modeling

Greg Dennis and Rob Seater
Software Design Group, MIT

model of an address book

abstract sig Target {}
sig Name extends Target {}
sig Addr extends Target {}

sig Book { addr: Name —-> Target
pred init [b: Book] { no b.addr
pred inv [b: Book] {

n not in n."addr
some addr.n => some n.addr

}

fun lookup [b: Book, n: Name]
n.” (b.addr) & Addr

}

assert namesResolve {
all b: Book | inv[b] =>
all n: Name | some b.addr[n]

}

check namesResolve for 4

}
}

let addr = b.addr | all n: Name ({

set Addr {

=> some lookupl[b,

nj

what about operations?

* how is a name & address added to a book?

* no built-in model of execution
— no notion of time or mutable state

 need to model time/state explicitly

e can use a new “book” after each mutation:

pred add [b, b': Book, n: Name, t: Target] {
b'.addr = b.addr + n—>t
}

address book: operation simulation

simulates an operation's executions
download addressBook.als from the tutorial website
execute run command to simulate the add operation
— simulated execution can begin from invalid state!
create and run the predicate showAad
— simulates the add method only from valid states

pred showAdd [b, b': Book, n: Name, t: Target] {
inv[b]
add[b, b', n, t]

}

modify showAdd to force interesting executions

address book: delete operation

> Write a predicate for a delete operation
— removes a name-target pair from a book

— simulate interesting executions

> assert and check that delete is the undo of add

— adding a name-target pair and then deleting that pair yields a book
equivalent to original

— why does this fail?

~ modify the assertion so that it only checks the case when the added
pair is not in the pre-state book, and check

pattern: abstract machine

* treat actions as operations on global state

sig State {..}

pred init [s: State] {..}

pred inv [s: State] {..}

pred opl [s, s’ : State]

pred opN [s, s’ : State]

{...
{..

}
}

 in addressBook, State is Book

— each Book represents a new system state

pattern: invariant preservation

* check that an operation preserves an invariant

assert initEstablishes {
all s: State | init[s] => inv|[s]
}

check 1initEstablishes

// for each operation
assert opPreserves {
all s, s': State |
inv([(s] && opls, s'] => inv|[s']
}

check opPreserves

- apply this pattern to the addressBook model
- do the add and delete ops preserve the invariant?

>

pattern: operation preconditions

include precondition constraints in an operation

— operations no longer total

the add operation with a precondition:

pred add[b, b':

t in Name =>

}

Book, n: Name, t:
// precondition

(n 'in t.*(b.addr)

// postcondition
b’ .addr = b.addr + n—->t

Target] {

&& some b.addr[t])

check that add now preserves the invariant

add a sensible precondition to the delete operation

— check that it now preserves the invariant

what about traces?

we can check properties of individual transitions
what about properties of sequences of transitions?

entire system simulation
— simulate the execution of a sequence of operations

algorithm correctness
— check that all traces end in a desired final state

planning problems
— find a trace that ends in a desired final state

pattern: traces

* model sequences of executions of abstract machine
« create linear (total) ordering over states

e connect successive states by operations
— constrains all states to be reachable

open util/ordering[State] as ord

fact traces {
init [ord/first]
all s: State - ord/last |
let s' = s.next |
opl[s, s'] or .. or opN[s, s']

- apply traces pattern to the address book model

ordering module

open util/ordering[S]

S =s0 + s1l + s2 + s3 + s4

« establishes linear ordering over atoms of signature S

first s0
last = s4
s2.next =
s2.prev =
s2 .nexts
s2.prevs

s3

sl
s3 + s4
sO + sl

lt[sl, s2]
lt[sl, sl1]
gt[sl, s2]
lte[s0, s3]
lte[s0, sO0]
gte[s2, s4]

true

false

false
true
true
false

>

>

address book simulation

simulate addressBook trace
— write and run an empty predicate

customize and cleanup visualization

— remove all components of the Ord module

but visualization is still complicated

need to use projection.. . .

without projection

prev_[Bookd] next_[Bookl] prev_[Bookz] next_[BookO] prev_[Bookl]

addr{Mamel] addr[Mamed] addr{Mamen] addr[Mamen] addr{Mameq] addr[Mamen] addr[Mamen] addr{Mamen] addr[Mameq]

still without projection

addr{Mamel]

next_[Book3]

addr{Mame0]

addr[Mamel]

prev_[BookS]

addr{Mamed]

addr[Marm e0]

addr{Mamed]

addr{Mamed]

addr{Mame0]

addr[Marm e0]

addr{Mamed]

i
(oet)
Addrd

addr[Marm e0]

/. prev_[Bookl]
G C—_C)

with projection

Crd0

e Book_0 % ! 3
L S ——

| -)

addr

Addri

C <<) Bunk_l}:]{ 55)

C <<) Bonk_';:}:]{ 55)

C <<) Bonk_:i}:] -

with projection and more

Mamel

Mamel

Mamed

Addrl Addrd

Addrs

E: ok_5 |5

checking safety properties

» can check safety property with one assertion
— because now all states are reachable

pred safe[s: State] {..}

assert allReachableSafe {
all s: State | safe]s]
}

> check addressBook invariant with one assertion

— what's the difference between this safety check and checking that
each operation preserves the invariant?

non-modularity of abstract machine

e gtatic traffic light mode

sig Color {}
sig Light {
color: Color

}

o dynamic traffic light model with abstract machine
— all dynamic components collected in one sig

sig Color {}
sig Light {}
sig State {
color: Light —-> one Color

}

pattern: local state

e embed state in individual objects

— variant of abstract machine

 move state/time signature out of first column

— typically most convenient in last column

global state

local state

sig Color {}
sig Light {}

sig State {
color: Light —-> one Color

}

sig Time {}
sig Color {}
sig Light {

color: Color one —> Time

}

example: leader election ina ring

« many distributed protocols require “leader’ process

— leader coordinates the other processes
— |leader “elected” by processes, not assigned in advance

* |eader is the process with the largest identifier
— each process has unique identifier 1

« leader election in a ring
processes pass identifiers around ring

— if identifier less than own, drops it
— if identifier greater, passes it on
— if identifier equal, elects itself leader

leader election: topology

* beginning of model using local state abstract machine:
— processes are ordered instead of given ids

open util/ordering[Time] as to
open util/ordering[Process] as po

sig Time {}

sig Process {
succ: Process,
toSend: Process —-> Time,
elected: set Time

}

- download ringElection.als from the tutorial website
~constrain the successor relation to form a ring

leader election: notes

* topology of the ring is static
— succ field has no Time column

* no constraint that there be one elected process
— that's a property we'd like to check

« set of elected processes is a definition

— “elected” at one time instance then no longer

fact defineElected {
no eclected. (to/first)
all t: Time - to/first |
elected.t = {p:Process |

p in (p.toSend.t - p.toSend. (t.prev))}

leader election: operations

> Wwrite initialization condition initft: Time]
— every process has exactly itself to send

- write no-op operation skipft, t: Time, p: Process]
— process p send no ids during that time step

- write send operation step|t, t': Time, p: Process]

— process p sends one id to successor
— successor keeps it or drops it

leader election: traces

* use the following traces constraint

fact traces {
init[to/first]
all t: Time - to/last | let t' = t.next
all p: Process | steplt, t', pl ||

step[t, t', succ.p] || skip[t, t', p]

 why does traces fact need step(t, t, succ.p)?
 what's the disadvantage to writing this instead?

some p: Process | stepl[t, t', pl &&
all p': Process - (p + p.succ) | skiplt,

t', pl

>

>

leader election: analysis

simulate interesting leader elections
create intuitive visualization with projection

check that at most one process is ever elected

— no more than one process is deemed elected
— Nno process Is deemed elected more than once

check that at least one process is elected

— check for 3 processes and 7 time instances
— write additional constraint to make this succeed

ordering module and exact scopes

open util/ordering[Time] as to
open util/ordering[Process] as po

» ordering module forces signature scopes to be exact

3 Process, 7 Time = exactly 3 Process, exactly / Time

e to analyze rings up to k processes in size:

sig Process {}

sig RingProcess extends Process {
succ: RingProcess,
toSend: RingProcess -> Time,
elected: set Time

}

fact {all p: RingProcess | RingProcess in p.”"succ }

machine diameter

 what trace length is long enough to catch all bugs?
— does “at most one elected” fail in a longer trace?
* machine diameter = max steps from initial state
— longest loopless path is an upper bound
* run this predicate for longer traces until no solution

pred looplessPath {

}

run looplessPath for 3 Process,

no disj t, t': Time | toSend.t = toSend.t'

? Time

- for three processes, what trace length
Is sufficient to explore all possible states?

55

AN

)

C\i

©

o

thank you!

e website
— http://alloy.mit.edu/

 provides. ..
— online tutorial
— reference manual
— research papers
— academic courses

— sample case studies
— alloy-discuss yahoo group

http://alloy.mit.edu/

