Reducing the Evolutionary Analysis Cost of Alloy

Hamid Bagheri

Workshop on the Future of Alloy
April 30 & May 1, 2018. Cambridge, MA
Alloy’s widespread applications

Design modeling and analysis
- TradeMaker
- MonArch

Program verification
- FORGE
- TACO
- Miniatur

Test-case generation
- TrimDroid
- Kesit
- TestEra

Security analysis
- SEPAR
- COVERT
- Poirot
Challenges

• No support for analysis of evolving specifications even if they are substantially overlapping

• Recompute results in each analysis

• Especially problematic in online analyses where specifications are kept in sync with running systems
Objective

Improve bounded analysis of *evolving* specifications
Envision

- Bound adjustment
- Constraint reduction & solution reuse
- Parallelization
Bound adjustment

Each change by itself is not likely to invalidate all the prior analysis results
Insights

Each change by itself is **not likely to invalidate** all the prior analysis results.

Results from previous analyses can be used to **narrow the exploration space** of the revised specification.
A sample Alloy specification

```alloy
sig FSObject {}
sig Dir extends FSObject {contents: set FSObject}
sig File extends FSObject {}
one sig Root extends Dir {}

fact hierarchy {
  no contents.Root
  all obj: FSObject | lone contents.obj
  FSObject in Root.*contents
  File + Dir = FSObject
}

run model {} for 4
```
A sample Alloy specification

```
sig FSObject {}
sig Dir extends FSObject {contents: set FSObject}
sig File extends FSObject {} 
one sig Root extends Dir {}

fact hierarchy {
  no contents.Root
  all obj: FSObject | lone contents.obj
  FSObject in Root.*contents
  File + Dir = FSObject
}

run model {} for 4
```
A sample Alloy specification

sig FSObject {}
sig Dir extends FSObject {contents: set FSObject}
sig File extends FSObject {}
one sig Root extends Dir {}

fact hierarchy {
 no contents.Root
 all obj: FSObject | lone contents.obj
 FSObject in Root.*contents
 File + Dir = FSObject
}

run model {} for 4
Relational variables and bounds

Upper Bound:
All possible values that can be assigned to the relation
Relational variables and bounds

Lower Bound:
The set of values that a relation should contain in all solutions
Relational variables and bounds

Exploration Space
Solutions within relational bounds

- Upper/lower bound
- Model instance
Change in the relational specification
Tighten bounds on relational variables
Tighten bounds on relational variables

Adjusted upper bound: union of values assigned to a relation in all solutions

$$\bigcup_{i \in I} i.val(r)$$
Tighten bounds on relational variables

Adjusted lower bound: intersection of values assigned to a relation in all solutions

\[\bigcap_{i \in I} i.val(r) \]
Tighten bounds on relational variables

Adjusted bounds reduce the exploration space
Constraint reduction & solution reuse

- Constraints recur during evolutionary analyses

- Incrementally store the constraints already solved, and retrieve them within the evolutionary analysis

- Prior work: memoization-based approaches in symbolic execution
Thank you