On Extending Kodkod to Support Temporal Features and Scenario Exploration

Nuno Macedo and Alcino Cunha et al
HASLab, INESC TEC & Universidade do Minho
Context

• Our group uses Alloy in research, teaching and consultancy
• We have explored extensions to problem expressibility, scenario exploration and solving procedures
 ○ target-oriented model finding
 ○ decomposed parallel solving strategy
 ○ symbolic relation bounds
 ○ dynamic relations and linear temporal formulas
• Required adapting or extending Kodkod, unified into a single release - Pardinus
• Testbed for functionalities, used under Electrum
Kodkod Model Finding

- **Problem definition**
 - universe of atoms
 - \{a, b\}
 - relations declared with upper- and lower-bounds (tuple sets)
 - \(r : {} \ {a, b} \)
 - \(s : {} \ {a, b} \)
 - first-order relational formulas

- **Solving**
 - SAT solvers
 - incremental solving for solution iteration
 - symmetry breaking

- **Scenario exploration**
 - generate solution to problem
 - new problem discarding previous solution
Target-Oriented Model Finding

● Problem definition
 ○ relations may have targets assigned (tuple sets between lower- and upper-bounds)
 \[r : \{\} \{a\} \{a, b\} \quad s : \{\} \{b\} \{a, b\} \]
 ○ improved expressibility (search for optimal solution)

● Solving
 ○ PMaxSAT solvers
 ○ Nicely fits Kodkod’s architecture, but solvers still unpredictable
 ○ how to perform symmetry breaking?

● Scenario exploration
 ○ generate minimal/maximal solutions to problem
 ○ solution with minimal/maximal changes from the previous solution
Decomposed Model Finding

- **Problem definition**
 - set of *partition* variables (define *configurations*)

 \[
 r : \{\} \{a, b\}
 \]
 - manual or automatic criteria

- **Solving**
 - staged, generate configurations, then try to extend to full solutions in parallel

 \[
 r : \{a\} \{a\} \quad s : \{\} \{a, b\}
 \]
 \[
 r : \{b\} \{b\} \quad s : \{\} \{a, b\}
 \]

 ...
 - large performance gains for certain classes of problems
 - symmetry breaking preserved

- **Scenario exploration**
 - focus on alternative configurations
 - challenging since configurations solved in parallel
Model Finding with Symbolic Bounds

- Problem definition
 - bounds are **symbolic**, relational expressions over relations + tuple sets
 - $r : \{\} \{a,b\}$
 - $s : \{\} \ r$
 - cleaner bounds, but no added expressibility

- Solving
 - bounds are resolved into tuple sets prior to plain SAT solving
 - establish dependencies between relations, used in decomposition criterion
 - resolution of symbolic bounds results in smaller search spaces when decomposed
 - $r : \{a\} \{a\}$
 - $s : \{\} \{a\}$

- Scenario exploration
 - NA
Temporal Model Finding

● Problem definition
 ○ relations declared as static our dynamic with upper- and lower bounds traces

 \[r : \{\} \{a, b\} \quad s : [\{\}, \ldots, \{\}] [\{\}, \ldots, \{a, b\}] \]
 ○ first-order relational LTL formulas
 ○ search within a range of trace lengths

● Solving
 ○ bounded: problem expanded into plain Kodkod with state idiom
 ○ unbounded: translation into SMV (through Electrod)
 ○ can we break symmetries specific to traces?

● Scenario exploration
 ○ solution with minimal trace length
 ○ solution with minimal/maximal states
 ○ solution fixed with a known prefix
 ○ solution with same/different static configuration
 ○ ...

...