
A
A
A

A

A

A

ALLOY AND THE FUTURE OF NETWORKING

Pamela Zave

Princeton University

Princeton, New Jersey

(MAYBE)

A
A
A

A

A

A

THIS IS
OUR MANIFESTO

The compositional architecture of the Internet
Pamela Zave

Princeton University
Princeton, New Jersey

pamela@pamelazave.com

Jennifer Rexford
Princeton University
Princeton, New Jersey
jrex@cs.princeton.edu

ABSTRACT
Contrary to the “classic” Internet architecture familiar to most peo-
ple, today’s Internet is a composition of a wide variety of networks.
The IP protocol suite o�ers a general-purpose network design with
a widely available implementation; as such, it is re-used to design
and implement networks with many di�erent purposes. Compo-
sitional architecture explains how, despite the fact that IP has not
changed signi�cantly since 1993, the Internet has evolved to meet
many new requirements and challenges since then. In this paper
we introduce a new and principled model for describing Internet
architecture, and give many examples of its validity. We also explain
how the model can help us facilitate innovation through interoper-
ation and evolution, re-use successful solution patterns, and verify
trustworthy network services.

ACM Reference format:
Pamela Zave and Jennifer Rexford. 2018. The compositional architecture of
the Internet. In Proceedings of ACM Conference, Washington, DC, USA, July
2017 (Conference’17), 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In 1992, the explosive growth of the World Wide Web began. The
architecture of the Internet was commonly described as having four
layers above the physical media, each providing a distinct function:
a “link” layer providing local packet delivery over heterogeneous
physical networks, a “network” layer providing best-e�ort global
packet delivery across autonomous networks all using the Internet
Protocol (IP), a “transport” layer providing communication services
such as reliable byte streams (TCP) and datagram service (UDP),
and an “application” layer. In 1993 the last major change was made
to this “classic” Internet architecture [10]; since then the scale and
economics of the Internet have precluded further changes to IP
[11].

A lot has happened in the world since 1993. The overwhelming
success of the Internet has created many new uses and challenges
that were not anticipated by its original architecture:

• Today, most networked devices are mobile.
• There has been an explosion of security threats.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HTTP
TCP
IP

IPsec
IP

GTP
UDP
IP

MPLS
MPLS

Ethernet
Ethernet network

another MPLS network

Multi-Protocol Label
Switching (MPLS) network

General Packet Radio
Service (GPRS) network

Virtual Private Network
(VPN)

public Internet

distributed Web-based
application system

Figure 1: Headers of a typical packet in the AT&T backbone
network. Headers lower in the diagram are outermost in the
actual packet.

• Most of the world’s telecommunication infrastructure and
entertainment distribution has moved to the Internet.

• Cloud computing was invented to help enterprises manage
the massive computing resources they now need.

• The IPv4 32-bit address space has been exhausted, but IPv6
has not yet taken over the bulk of Internet tra�c.

• In a deregulated, competitive world, network providers con-
trol costs by allocating resources dynamically, rather than
provisioning networks with static resources for peak loads.

Here is a conundrum. The Internet is meeting these new challenges
fairly well, yet neither the IP protocol suite nor the way that experts
describe the Internet has changed signi�cantly since 1993. Figure 1
shows the headers of a typical packet in the AT&T backbone [19],
giving us clear evidence that the challenges have been met by mech-
anisms well outside the limits of the classic Internet architecture.
In the classic description, no headers below HTTP except those
labeled “public Internet” and “Ethernet network” would exist.

In this paper wewill present a newway of describing the Internet,
better attuned to the realities of networking today, and to meeting
the challenges of the future. Its central idea is that the architecture
of the Internet is a �exible composition of many networks—not just
the networks acknowledged in the classic Internet architecture, but
many other networks both above and below the public Internet
in a hierarchy of abstraction. For example, the headers in Figure 1
indicate that the packet is being transmitted through six networks
below the application system. Our model is as principled as the one
it replaces, so that we are not reduced to grappling with masses of

THE INTERNET IS A FLEXIBLE
COMPOSITION OF MANY NETWORKS

each network has all the same
basic mechanisms, . . .

. . . but in each network they are
specialized for a particular . . .
. . . purpose,
. . . membership scope,
. . . geographical span, and
. . . level of abstraction

because all networks have
fundamental similarity, they all have
common interfaces for composition

in other words, networking can be made modular, and the module is a network

our need:
useful formal models to support this work

(definition, design, analysis, verification, transformation, code generation, etc.)

A
A
A

A

A

A

P4: PROGRAMMING PROTOCOL-INDEPENDENT
 PACKET PROCESSORS

match-
action
table

match-
action
table match-

action
table

match-
action
tablematch-

action
table

B
U
F
F
E
R
/
P
O
R
T

P
A
R
S
E
R

packet
input

packet
output

ingress pipeline

egress
pipeline

NETWORK ELEMENT

the red parts are coded
in P4, compiled to
software or hardware

actions generate meta-
data for a packet, modify
packets, choose output
port for a packet

Why do we like P4?

by networking standards it is a high-level language

P4 is cutting-edge research with an active
community

plausibly, we can use P4 to describe generic
packet processing for the compositional model

A
A
A

A

A

A

match-
action
table

match-
action
table match-

action
table

match-
action
tablematch-

action
table

B
U
F
F
E
R
/
P
O
R
T

P
A
R
S
E
R

packet
input

packet
output

A P4 PROGRAM IS NOT COMPLETE . . .
BECAUSE IT DOES NOT CREATE OR MAINTAIN MATCH-ACTION TABLES

generalized
P4 programs

as
operational

specifications
of network
semantics

forwardingTable: headers -> inPort -> actions -> outPort

Alloy models of
static tables,

their properties,
and their
semantic

consequences

reaches: headers -> nodes -> nodes

+ =
plausible

formal models
of composable
and composed

networks

A
A
A

A

A

A

not an original thought, but . . .
. . . I have great examples

. . . I am willing to use a restricted style

basic.als

unique.als

tree.alsauth.als

a very general, basic model
of forwarding

HAVE I MENTIONED THAT NETWORKING IS REALLY,
REALLY, COMPLEX? CAN ONLY ANALYZE A SMALL PIECE OF IT

IN ONE MODEL . . . SO I WANT FAMILIES OF
MODELS, AND SOME AUTOMATED HELP
WITH DERIVATION AND CONSISTENCY

A
A
A

A

A

A

not an original thought, but . . .
. . . I have great examples

. . . I am willing to use a restricted style

basic.als

unique.als

tree.alsauth.als

a very general, basic model
of forwarding

HAVE I MENTIONED THAT NETWORKING IS REALLY,
REALLY, COMPLEX? CAN ONLY ANALYZE A SMALL PIECE OF IT

IN ONE MODEL . . . SO I WANT FAMILIES OF
MODELS, AND SOME AUTOMATED HELP
WITH DERIVATION AND CONSISTENCY

like basic, except that complexity has been
reduced by assuming that names -> nodes
is a bijection, and simplifying based on this

if the network topology is a
spanning tree, you can be
sure there are no routing loops

adds source names in
packets and authentication
of source names

A
A
A

A

A

A

basic.als

unique.als

tree.alsauth.als

a very general,
basic model
of forwarding

THIS IS WHAT I HAVE DONE

the models may not look complex,
but debugging them has been
really hard

frequently, I find an improvement by
working on one model, then have
to go back and apply the change to
all the other models

like basic, except that complexity has been
reduced by assuming that names -> nodes
is a bijection, and simplifying based on this

if the network topology is a
spanning tree, you can be
sure there are no routing loops

adds source names in
packets and authentication
of source names

A
A
A

A

A

A

basic.als

unique.als

tree.als

auth.als

THIS IS WHAT I DREAM OF: A LATTICE WHOSE PARTIAL ORDER
IS “IS AN EXTENSION OF”

basic+tree.als

auth+basic+tree.als

manual
derivation

automated
or semi-automated

derivation

A
A
A

A

A

A

DERIVATION OF UNIQUE.ALS FROM BASIC.ALS

basic.als unique.als

sig Node { }sig Name, Node { }

sig Network {
 nodes: set Node,
 names: set Name,
 name: nodes -> names,
 . . .
}

sig Network {
 nodes: set Node,
 . . .
}

name is an
indirect way
of referring
to a node

drop “sig Name,” “names” and “name” fields

TO DERIVE:

make substitutions:

Name

names

name

Node

nodes

identity function on Node

simplify expressions

remove tautologies

A
A
A

A

A

A

DERIVATION OF BASIC+TREE.ALS

basic and minor sigs, facts

sig Network {

 many fields }

{ constraints on fields }

Is_spanning_tree_network [w: Network]

pred Good_network_exists [w: Network]

{ all named predicates }

run Good_network_exists

assertions and checks of theorems

predicates for named, interesting
properties like

tree.als extends unique.als

the types of Header.destination,
positiveReach, negativeReach
have changed;

take the union;

where named entities have
different declarations or
definitions, use the version from
basic.als because it is more
general than unique.als

when theorems from tree.als
using these relations, substitute
names for nodes

and the theorems are still valid!

A
A
A

A

A

A

ASK ME ABOUT . . .

ALLOY:

THE MISSING MANUALS

A
A
A

A

A

A

ALLOY: THE MISSING MANUALS

ALL ABOUT SOLVERS

which solver should I use?

how should I structure my model
—which has a big invariant—to
get useful unsat cores?

ALL ABOUT SEQUENCES

where do I find the libraries for the
three (I think) ways of modeling
sequences?

how do the three compare with
respect to notational simplicity,
contraindications, equality tests,
and other gotchas?

is it true that if a model manipulates
sequences, it must instantiate all
sequences?

could I please have a short but
complete example (include files,
sigs, etc.) for each style, so I don’t
have to figure it all out again each
time?

