
Alloy Analyzer 4 Tutorial

Session 3: Static Modeling

Greg Dennis and Rob Seater
Software Design Group, MIT

static vs. dynamic models

● static models
– describes states, not behaviors
– properties are invariants
– e.g. that a list is sorted

● dynamic models
– describe transitions between states
– properties are operations
– e.g. how a sorting algorithm works

modeling academic records

● course catalog and graduation requirements

➢ create a new file in the Alloy Analyzer

➢ save it as courses.als

➢ write the appropriate module header

set declarations

➢ declare signatures for the following

– our system has courses, students, and departments

– all courses are either introductory or advanced

– courses of either type can be electives

– students are freshmen, sophomores, juniors, seniors

classification

● first step of building a model
– consider what things are relevant
– structure them hierarchically
– subsets for orthogonal classification

● why not include in your classification . . . ?
– the registrar
– course prerequisites
– rooms where courses meet

meaning unclear

relationship, not entity

irrelevant

modeling the relationships

➢ create fields for the following

– course belongs to a single department

– department has courses required to graduate

– advanced course has one or more prerequisites

– student has at most one major department

– student has courses they have taken

pattern: definition

● define a new term using existing terms
– declare new relation and constrain to existing relations
– constraint often written as equality, e.g.

➢ define a term for all the courses in a department
– differs from courses required by a department

sig Person {
 spouse: lone Person,
 parents: set Person,
 inlaws: set Person
}
fact { inlaws = spouse.parents }

pattern: composite

● prerequisites establish composite hierarchy
– advanced courses are composites
– introductory courses are leafs
– another example: file system directories and files

● composites typically must be acyclic
– e.g. directory cannot contain itself

➢ constrain prerequisite relation to be acyclic
– course cannot be its own prerequisite

AdvancedIntroductory

Course

pattern: sanity check

● write simple assertions while building models

● you'll be surprised how many fail

➢ check that every advanced course has an introductory course that
precedes it

functions and predicates

➢ create predicates or functions for the following

– condition that a student can take a course
● student has taken prereqs but not course itself

– for a set of courses, expression for complete prereqs
● prereqs of prereqs, prereqs of prereqs of prereqs, etc

– condition that a student can graduate
● student is a senior with a major
● has taken all course's required by dept
● one or more of student's courses are electives

pattern: guided simulation

● simulates model to check consistency
– does the model admit any instances?
– explore typical & interesting configurations

➢ create predicates with desired configurations
– run predicates to ensure they exist

● example configuration:
– every department has at least one advanced course
– at least one student can graduate

compact prerequisites

● possible redundancy in prerequisite relation
– transitive prerequisites can be direct prerequisites
– over-complicates solutions and visualizations

➢ with constraint, eliminate redundant prereqs
– try it with and without quantifiers

c1 c2 c3

pattern: multirelation

● use higher-arity relation to model relationship between
more than two entities

● address book example:

➢ create a set of grades
➢ student has a grade in each course taken

sig Book {
 addrs: Name ­> Addr
}

pattern: singleton

● particular elements of set play important roles
● use one multiplicity to make a singleton sig

➢ divide grades into exactly A, B, C, D, and F
➢ change graduation condition so student must pass (C or better)

in each required course

one sig Root extends Directory {}

pattern: approximation

● omit/loosen constraints present in reality
– don't need to model everything!

● looser model often good enough
– if abstraction, property preservation is sound

● important to keep approximations in mind
➢ what approximations are in our course model?

Monet

check and visualize

➢ write assertion that if a student can graduate, they must have
passed all required courses as well as transitive prerequisites of
required courses

➢

➢ check assertion
➢

➢ create intuitive visualization for counterexample
– turn on and off sets and relations
– change colors, shapes, names
– turn relations into attributes
– use defined variables

➢ add sensible constraints to ensure assertion passes

demo: declarative course scheduler

● designed and built by Vincent Yeung
● web application backed by Alloy engine
● generate a course schedule to satisfy MIT degree requirements

given past courses
● http://sdg.csail.mit.edu/projects/scheduler.html

pattern: set object

● all relations in Alloy are first order
● but some relationships are higher-order

– relate sets of elements, not individuals

● solution: represent sets themselves as objects
– single field relating set to its elements
– often canonicalized: no two sets have same elements

➢ allow departments multiple sets of required courses
– student can fulfill anyone of those sets
– (optional) canonicalize required sets

